Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Ant Colony Optimization in solving Multi-Skill Resource-Constrained Project Scheduling Problem (1603.08538v2)

Published 28 Mar 2016 in cs.NE

Abstract: In this paper Hybrid Ant Colony Optimization (HAntCO) approach in solving Multi--Skill Resource Constrained Project Scheduling Problem (MS--RCPSP) has been presented. We have proposed hybrid approach that links classical heuristic priority rules for project scheduling with Ant Colony Optimization (ACO). Furthermore, a novel approach for updating pheromone value has been proposed, based on both the best and worst solutions stored by ants. The objective of this paper is to research the usability and robustness of ACO and its hybrids with priority rules in solving MS--RCPSP. Experiments have been performed using artificially created dataset instances, based on real--world ones. We published those instances that can be used as a benchmark. Presented results show that ACO--based hybrid method is an efficient approach. More directed search process by hybrids makes this approach more stable and provides mostly better results than classical ACO.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (106)

Summary

We haven't generated a summary for this paper yet.