Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A multinomial probabilistic model for movie genre predictions (1603.07849v1)

Published 25 Mar 2016 in cs.IR and cs.LG

Abstract: This paper proposes a movie genre-prediction based on multinomial probability model. To the best of our knowledge, this problem has not been addressed yet in the field of recommender system. The prediction of a movie genre has many practical applications including complementing the items categories given by experts and providing a surprise effect in the recommendations given to a user. We employ mulitnomial event model to estimate a likelihood of a movie given genre and the Bayes rule to evaluate the posterior probability of a genre given a movie. Experiments with the MovieLens dataset validate our approach. We achieved 70% prediction rate using only 15% of the whole set for training.

Citations (11)

Summary

We haven't generated a summary for this paper yet.