Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-supervised Word Sense Disambiguation with Neural Models (1603.07012v2)

Published 22 Mar 2016 in cs.CL

Abstract: Determining the intended sense of words in text - word sense disambiguation (WSD) - is a long standing problem in natural language processing. Recently, researchers have shown promising results using word vectors extracted from a neural network LLM as features in WSD algorithms. However, a simple average or concatenation of word vectors for each word in a text loses the sequential and syntactic information of the text. In this paper, we study WSD with a sequence learning neural net, LSTM, to better capture the sequential and syntactic patterns of the text. To alleviate the lack of training data in all-words WSD, we employ the same LSTM in a semi-supervised label propagation classifier. We demonstrate state-of-the-art results, especially on verbs.

Citations (16)

Summary

We haven't generated a summary for this paper yet.