Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong completeness and semi-flows for stochastic differential equations with monotone drift (1603.06775v1)

Published 22 Mar 2016 in math.PR

Abstract: It is well-known that a stochastic differential equation (sde) on a Euclidean space driven by a (possibly infinite-dimensional) Brownian motion with Lipschitz coefficients generates a stochastic flow of homeomorphisms. If the Lipschitz condition is replaced by an appropriate one-sided Lipschitz condition (sometimes called monotonicity condition) and the number of driving Brownian motions is finite, then existence and uniqueness of global solutions for each fixed initial condition is also well-known. In this paper we show that under a slightly stronger one-sided Lipschitz condition the solutions still generate a stochastic semiflow which is jointly continuous in all variables (but which is generally neither one-to-one nor onto). We also address the question of strong $\Delta$-completeness which means that there exists a modification of the solution which if restricted to any set of dimension $\Delta$ is almost surely continuous with respect to the initial condition.

Summary

We haven't generated a summary for this paper yet.