Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian correction for covariate measurement error: a frequentist evaluation and comparison with regression calibration (1603.06284v1)

Published 20 Mar 2016 in stat.ME

Abstract: Bayesian approaches for handling covariate measurement error are well established, and yet arguably are still relatively little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian analyses. In this paper we first give an overview of the Bayesian approach to handling covariate measurement error, and contrast it with regression calibration (RC), arguably the most commonly adopted approach. We then argue why the Bayesian approach has a number of statistical advantages compared to RC, and demonstrate that implementing the Bayesian approach is usually quite feasible for the analyst. Next we describe the closely related maximum likelihood and multiple imputation approaches, and explain why we believe the Bayesian approach to generally be preferable. We then empirically compare the frequentist properties of RC and the Bayesian approach through simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey.

Summary

We haven't generated a summary for this paper yet.