Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large scale near-duplicate image retrieval using Triples of Adjacent Ranked Features (TARF) with embedded geometric information (1603.06093v1)

Published 19 Mar 2016 in cs.CV

Abstract: Most approaches to large-scale image retrieval are based on the construction of the inverted index of local image descriptors or visual words. A search in such an index usually results in a large number of candidates. This list of candidates is then re-ranked with the help of a geometric verification, using a RANSAC algorithm, for example. In this paper we propose a feature representation, which is built as a combination of three local descriptors. It allows one to significantly decrease the number of false matches and to shorten the list of candidates after the initial search in the inverted index. This combination of local descriptors is both reproducible and highly discriminative, and thus can be efficiently used for large-scale near-duplicate image retrieval.

Citations (2)

Summary

We haven't generated a summary for this paper yet.