Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast DPP Sampling for Nyström with Application to Kernel Methods (1603.06052v2)

Published 19 Mar 2016 in cs.LG

Abstract: The Nystr\"om method has long been popular for scaling up kernel methods. Its theoretical guarantees and empirical performance rely critically on the quality of the landmarks selected. We study landmark selection for Nystr\"om using Determinantal Point Processes (DPPs), discrete probability models that allow tractable generation of diverse samples. We prove that landmarks selected via DPPs guarantee bounds on approximation errors; subsequently, we analyze implications for kernel ridge regression. Contrary to prior reservations due to cubic complexity of DPPsampling, we show that (under certain conditions) Markov chain DPP sampling requires only linear time in the size of the data. We present several empirical results that support our theoretical analysis, and demonstrate the superior performance of DPP-based landmark selection compared with existing approaches.

Citations (76)

Summary

We haven't generated a summary for this paper yet.