Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability of travelling waves in a Wolbachia invasion (1603.05744v2)

Published 18 Mar 2016 in math.DS

Abstract: Numerous studies have examined the growth dynamics of Wolbachia within populations and the resultant rate of spatial spread. This spread is typically characterised as a travelling wave with bistable local growth dynamics due to a strong Allee effect generated from cytoplasmic incompatibility. While this rate of spread has been calculated from numerical solutions of reaction-diffusion models, none have examined the spectral stability of such travelling wave solutions. In this study we analyse the stability of a travelling wave solution generated by the reaction-diffusion model of Chan & Kim (2013) by computing the essential and point spectrum of the linearised operator arising in the model. The point spectrum is computed via an Evans function using the compound matrix method, whereby we find that it has no roots with positive real part. Moreover, the essential spectrum lies strictly in the left half plane. Thus, we find that the travelling wave solution found by Chan & Kim (2013) corresponding to competition between Wolbachia-infected and -uninfected mosquitoes is linearly stable. We employ a dimension counting argument to suggest that, under realistic conditions, the wavespeed corresponding to such a solution is unique.

Summary

We haven't generated a summary for this paper yet.