Scattering for a 3D coupled nonlinear Schrödinger system (1603.05723v1)
Abstract: We consider the three-dimensional cubic nonlinear Schr\"odinger system \begin{equation*} \begin{cases} i\partial_tu+\Delta u+(|u|2+\beta |v|2)u=0,\ i\partial_tv+\Delta v+(|v|2+\beta |u|2)v=0. \end{cases} \end{equation*} Let $(P,Q)$ be any ground state solution of the above Schr\"odinger system. We show that for any initial data $(u_0,v_0)$ in $H1(\mathbb{R}3)\times H1(\mathbb{R}3)$ satisfying $M(u_0,v_0)A(u_0,v_0)<M(P,Q)A(P,Q)$ and $M(u_0,v_0)E(u_0,v_0)<M(P,Q)E(P,Q)$, where $M(u,v)$ and $E(u,v)$ are the mass and energy (invariant quantities) associated to the system, the corresponding solution is global in $H1(\mathbb{R}3)\times H1(\mathbb{R}3)$ and scatters. Our approach is in the same spirit of Duyckaerts-Holmer-Roudenko, where the authors considered the 3D cubic nonlinear Schr\"odinger equation.