Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multidimensional Sparse Recovery for MIMO Channel Parameter Estimation (1603.05410v1)

Published 17 Mar 2016 in cs.IT and math.IT

Abstract: Multipath propagation is a common phenomenon in wireless communication. Knowledge of propagation path parameters such as complex channel gain, propagation delay or angle-of-arrival provides valuable information on the user position and facilitates channel response estimation. A major challenge in channel parameter estimation lies in its multidimensional nature, which leads to large-scale estimation problems which are difficult to solve. Current approaches of sparse recovery for multidimensional parameter estimation aim at simultaneously estimating all channel parameters by solving one large-scale estimation problem. In contrast to that we propose a sparse recovery method which relies on decomposing the multidimensional problem into successive one-dimensional parameter estimation problems, which are much easier to solve and less sensitive to off-grid effects, while providing proper parameter pairing. Our proposed decomposition relies on convex optimization in terms of nuclear norm minimization and we present an efficient implementation in terms of the recently developed STELA algorithm.

Citations (18)

Summary

We haven't generated a summary for this paper yet.