Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On self-similar finite $p$-groups (1603.04879v1)

Published 15 Mar 2016 in math.GR

Abstract: In this paper, we address the following question: when is a finite $p$-group $G$ self-similar, i.e. when can $G$ be faithfully represented as a self-similar group of automorphisms of the $p$-adic tree? We show that, if $G$ is a self-similar finite $p$-group of rank $r$, then its order is bounded by a function of $p$ and $r$. This applies in particular to finite $p$-groups of a given coclass. In the particular case of groups of maximal class, that is, of coclass $1$, we can fully answer the question above: a $p$-group of maximal class $G$ is self-similar if and only if it contains an elementary abelian maximal subgroup over which $G$ splits. Furthermore, in that case the order of $G$ is at most $pp+1$, and this bound is sharp.

Summary

We haven't generated a summary for this paper yet.