Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The $E_8$ geometry from a Clifford perspective (1603.04805v1)

Published 18 Feb 2016 in math.RT, hep-th, math-ph, math.GR, math.MP, and math.QA

Abstract: This paper considers the geometry of $E_8$ from a Clifford point of view in three complementary ways. Firstly, in earlier work, I had shown how to construct the four-dimensional exceptional root systems from the 3D root systems using Clifford techniques, by constructing them in the 4D even subalgebra of the 3D Clifford algebra; for instance the icosahedral root system $H_3$ gives rise to the largest (and therefore exceptional) non-crystallographic root system $H_4$. Arnold's trinities and the McKay correspondence then hint that there might be an indirect connection between the icosahedron and $E_8$. Secondly, in a related construction, I have now made this connection explicit for the first time: in the 8D Clifford algebra of 3D space the $120$ elements of the icosahedral group $H_3$ are doubly covered by $240$ 8-component objects, which endowed with a `reduced inner product' are exactly the $E_8$ root system. It was previously known that $E_8$ splits into $H_4$-invariant subspaces, and we discuss the folding construction relating the two pictures. This folding is a partial version of the one used for the construction of the Coxeter plane, so thirdly we discuss the geometry of the Coxeter plane in a Clifford algebra framework. We advocate the complete factorisation of the Coxeter versor in the Clifford algebra into exponentials of bivectors describing rotations in orthogonal planes with the rotation angle giving the correct exponents, which gives much more geometric insight than the usual approach of complexification and search for complex eigenvalues. In particular, we explicitly find these factorisations for the 2D, 3D and 4D root systems, $D_6$ as well as $E_8$, whose Coxeter versor factorises as $W=\exp(\frac{\pi}{30}B_C)\exp(\frac{11\pi}{30}B_2)\exp(\frac{7\pi}{30}B_3)\exp(\frac{13\pi}{30}B_4)$.

Summary

We haven't generated a summary for this paper yet.