Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Kantorovich's theorem for Newton's method for solving generalized equations under the majorant condition (1603.04782v2)

Published 15 Mar 2016 in math.NA

Abstract: In this paper we consider a version of the Kantorovich's theorem for solving the generalized equation $F(x)+T(x)\ni 0$, where $F$ is a Fr\'echet derivative function and $T$ is a set-valued and maximal monotone acting between Hilbert spaces. We show that this method is quadratically convergent to a solution of $F(x)+T(x)\ni 0$. We have used the idea of majorant function, which relaxes the Lipschitz continuity of the derivative $F'$. It allows us to obtain the optimal convergence radius, uniqueness of solution and also to solving generalized equations under Smale's condition.

Summary

We haven't generated a summary for this paper yet.