Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global solutions to the shallow-water system (1603.04680v1)

Published 15 Mar 2016 in math.AP, math-ph, math.MP, and physics.flu-dyn

Abstract: The classical system of shallow-water (Saint--Venant) equations describes long surface waves in an inviscid incompressible fluid of a variable depth. Although shock waves are expected in this quasilinear hyperbolic system for a wide class of initial data, we find a sufficient condition on the initial data that guarantees existence of a global classical solution continued from a local solution. The sufficient conditions can be easily satisfied for the fluid flow propagating in one direction with two characteristic velocities of the same sign and two monotonically increasing Riemann invariants. We prove that these properties persist in the time evolution of the classical solutions to the shallow-water equations and provide no shock wave singularities formed in a finite time over a half-line or an infinite line. On a technical side, we develop a novel method of an additional argument, which allows to obtain local and global solutions to the quasilinear hyperbolic systems in physical rather than characteristic variables.

Summary

We haven't generated a summary for this paper yet.