Papers
Topics
Authors
Recent
2000 character limit reached

Generalized threshold-based epidemics in random graphs: the power of extreme values

Published 15 Mar 2016 in cs.SI and physics.soc-ph | (1603.04643v1)

Abstract: Bootstrap percolation is a well-known activation process in a graph, in which a node becomes active when it has at least $r$ active neighbors. Such process, originally studied on regular structures, has been recently investigated also in the context of random graphs, where it can serve as a simple model for a wide variety of cascades, such as the spreading of ideas, trends, viral contents, etc. over large social networks. In particular, it has been shown that in $G(n,p)$ the final active set can exhibit a phase transition for a sub-linear number of seeds. In this paper, we propose a unique framework to study similar sub-linear phase transitions for a much broader class of graph models and epidemic processes. Specifically, we consider i) a generalized version of bootstrap percolation in $G(n,p)$ with random activation thresholds and random node-to-node influences; ii) different random graph models, including graphs with given degree sequence and graphs with community structure (block model). The common thread of our work is to show the surprising sensitivity of the critical seed set size to extreme values of distributions, which makes some systems dramatically vulnerable to large-scale outbreaks. We validate our results running simulation on both synthetic and real graphs.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.