Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized threshold-based epidemics in random graphs: the power of extreme values (1603.04643v1)

Published 15 Mar 2016 in cs.SI and physics.soc-ph

Abstract: Bootstrap percolation is a well-known activation process in a graph, in which a node becomes active when it has at least $r$ active neighbors. Such process, originally studied on regular structures, has been recently investigated also in the context of random graphs, where it can serve as a simple model for a wide variety of cascades, such as the spreading of ideas, trends, viral contents, etc. over large social networks. In particular, it has been shown that in $G(n,p)$ the final active set can exhibit a phase transition for a sub-linear number of seeds. In this paper, we propose a unique framework to study similar sub-linear phase transitions for a much broader class of graph models and epidemic processes. Specifically, we consider i) a generalized version of bootstrap percolation in $G(n,p)$ with random activation thresholds and random node-to-node influences; ii) different random graph models, including graphs with given degree sequence and graphs with community structure (block model). The common thread of our work is to show the surprising sensitivity of the critical seed set size to extreme values of distributions, which makes some systems dramatically vulnerable to large-scale outbreaks. We validate our results running simulation on both synthetic and real graphs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.