Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Generation of Inductive Validity Cores for Safety Properties (1603.04276v2)

Published 14 Mar 2016 in cs.SE

Abstract: Symbolic model checkers can construct proofs of properties over very complex models. However, the results reported by the tool when a proof succeeds do not generally provide much insight to the user. It is often useful for users to have traceability information related to the proof: which portions of the model were necessary to construct it. This traceability information can be used to diagnose a variety of modeling problems such as overconstrained axioms and underconstrained properties, and can also be used to measure completeness of a set of requirements over a model. In this paper, we present a new algorithm to efficiently compute the inductive validity core (IVC) within a model necessary for inductive proofs of safety properties for sequential systems. The algorithm is based on the UNSAT core support built into current SMT solvers and a novel encoding of the inductive problem to try to generate a minimal inductive validity core. We prove our algorithm is correct, and describe its implementation in the JKind model checker for Lustre models. We then present an experiment in which we benchmark the algorithm in terms of speed, diversity of produced cores, and minimality, with promising results.

Citations (34)

Summary

We haven't generated a summary for this paper yet.