Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An $\ell_{\infty}$ Eigenvector Perturbation Bound and Its Application to Robust Covariance Estimation (1603.03516v2)

Published 11 Mar 2016 in math.ST, math.NA, and stat.TH

Abstract: In statistics and machine learning, people are often interested in the eigenvectors (or singular vectors) of certain matrices (e.g. covariance matrices, data matrices, etc). However, those matrices are usually perturbed by noises or statistical errors, either from random sampling or structural patterns. One usually employs Davis-Kahan $\sin \theta$ theorem to bound the difference between the eigenvectors of a matrix $A$ and those of a perturbed matrix $\widetilde{A} = A + E$, in terms of $\ell_2$ norm. In this paper, we prove that when $A$ is a low-rank and incoherent matrix, the $\ell_{\infty}$ norm perturbation bound of singular vectors (or eigenvectors in the symmetric case) is smaller by a factor of $\sqrt{d_1}$ or $\sqrt{d_2}$ for left and right vectors, where $d_1$ and $d_2$ are the matrix dimensions. The power of this new perturbation result is shown in robust covariance estimation, particularly when random variables have heavy tails. There, we propose new robust covariance estimators and establish their asymptotic properties using the newly developed perturbation bound. Our theoretical results are verified through extensive numerical experiments.

Summary

We haven't generated a summary for this paper yet.