Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functional Autoregression for Sparsely Sampled Data (1603.02982v3)

Published 9 Mar 2016 in stat.ME

Abstract: We develop a hierarchical Gaussian process model for forecasting and inference of functional time series data. Unlike existing methods, our approach is especially suited for sparsely or irregularly sampled curves and for curves sampled with non-negligible measurement error. The latent process is dynamically modeled as a functional autoregression (FAR) with Gaussian process innovations. We propose a fully nonparametric dynamic functional factor model for the dynamic innovation process, with broader applicability and improved computational efficiency over standard Gaussian process models. We prove finite-sample forecasting and interpolation optimality properties of the proposed model, which remain valid with the Gaussian assumption relaxed. An efficient Gibbs sampling algorithm is developed for estimation, inference, and forecasting, with extensions for FAR(p) models with model averaging over the lag p. Extensive simulations demonstrate substantial improvements in forecasting performance and recovery of the autoregressive surface over competing methods, especially under sparse designs. We apply the proposed methods to forecast nominal and real yield curves using daily U.S. data. Real yields are observed more sparsely than nominal yields, yet the proposed methods are highly competitive in both settings.

Citations (37)

Summary

We haven't generated a summary for this paper yet.