Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Permutation p-value approximation via generalized Stolarsky invariance (1603.02757v2)

Published 9 Mar 2016 in math.ST, math.CO, and stat.TH

Abstract: It is common for genomic data analysis to use $p$-values from a large number of permutation tests. The multiplicity of tests may require very tiny $p$-values in order to reject any null hypotheses and the common practice of using randomly sampled permutations then becomes very expensive. We propose an inexpensive approximation to $p$-values for two sample linear test statistics, derived from Stolarsky's invariance principle. The method creates a geometrically derived set of approximate $p$-values for each hypothesis. The average of that set is used as a point estimate $\hat p$ and our generalization of the invariance principle allows us to compute the variance of the $p$-values in that set. We find that in cases where the point estimate is small the variance is a modest multiple of the square of the point estimate, yielding a relative error property similar to that of saddlepoint approximations. On a Parkinson's disease data set, the new approximation is faster and more accurate than the saddlepoint approximation. We also obtain a simple probabilistic explanation of Stolarsky's invariance principle.

Summary

We haven't generated a summary for this paper yet.