Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large deviations for the two-dimensional stochastic Navier-Stokes equation with vanishing noise correlation (1603.02527v1)

Published 8 Mar 2016 in math.PR

Abstract: We are dealing with the validity of a large deviation principle for the two-dimensional Navier-Stokes equation, with periodic boundary conditions, perturbed by a Gaussian random forcing. We are here interested in the regime where both the strength of the noise and its correlation are vanishing, on a length scale $\e$ and $\d(\e)$, respectively, with $0<\e,\ \d(\e)<<1$. Depending on the relationship between $\e$ and $\d(\e)$ we will prove the validity of the large deviation principle in different functional spaces.

Summary

We haven't generated a summary for this paper yet.