Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A novel learning-based frame pooling method for Event Detection (1603.02078v2)

Published 7 Mar 2016 in cs.CV

Abstract: Detecting complex events in a large video collection crawled from video websites is a challenging task. When applying directly good image-based feature representation, e.g., HOG, SIFT, to videos, we have to face the problem of how to pool multiple frame feature representations into one feature representation. In this paper, we propose a novel learning-based frame pooling method. We formulate the pooling weight learning as an optimization problem and thus our method can automatically learn the best pooling weight configuration for each specific event category. Experimental results conducted on TRECVID MED 2011 reveal that our method outperforms the commonly used average pooling and max pooling strategies on both high-level and low-level 2D image features.

Citations (2)

Summary

We haven't generated a summary for this paper yet.