Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuum families of non-displaceable Lagrangian tori in $(\mathbb{C}P^1)^{2m}$ (1603.02006v2)

Published 7 Mar 2016 in math.SG

Abstract: We construct a family of Lagrangian tori $\Thetan_s$ $\subset$ $(\mathbb{C}P1)n$, $s \in (0,1)$, where $\Thetan_{1/2} = \Thetan$, is the monotone twist Lagrangian torus described by Chekanov-Schlenk. We show that for $n = 2m$ and $s \ge 1/2$ these tori are non-displaceable. Then by considering $\Theta{k_1}_{s_1}$ $ \times$ $\cdots$ $\times$ $ \Theta{k_l}_{s_l}$ $ \times$ $ (S2_{\mathrm{eq}}){n - \sum_i k_i}$ $ \subset $ $(\mathbb{C}P1)n$, with $s_i \in [1/2,1)$ and $k_i \in 2\mathbb{Z}{>0}$, $\sum_i k_i \le n$ we get several $l$-dimensional families of non-displaceable Lagrangian tori. We also show that there exists partial symplectic quasi-states $\zeta{\mathfrak{b}_s}{\textbf{e}s}$ and linearly independent homogeneous Calabi quasimorphims $\mu{\mathfrak{b}_s}{\textbf{e}s}$ or which $\Theta{2m}_s$ are $\zeta{\mathfrak{b}_s}{\textbf{e}s}$-superheavy and $\mu{\mathfrak{b}_s}{\textbf{e}s}$-superheavy. We also prove a similar result for $(\mathbb{C}P2 3\bar{\mathbb{C}P2}, \omega\epsilon)$, where ${\omega_\epsilon; 0 < \epsilon < 1}$ is a family of symplectic forms in $\mathbb{C}P2 3\bar{\mathbb{C}P2}$, for which $\omega_{1/2}$ is monotone.

Summary

We haven't generated a summary for this paper yet.