Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal Opinion Spam Detection by Multivariate Indicative Signals (1603.01929v1)

Published 7 Mar 2016 in cs.SI

Abstract: Online consumer reviews reflect the testimonials of real people, unlike advertisements. As such, they have critical impact on potential consumers, and indirectly on businesses. According to a Harvard study (Luca 2011), +1 rise in star-rating increases revenue by 5-9%. Problematically, such financial incentives have created a market for spammers to fabricate reviews, to unjustly promote or demote businesses, activities known as opinion spam (Jindal and Liu 2008). A vast majority of existing work on this problem have formulations based on static review data, with respective techniques operating in an offline fashion. Spam campaigns, however, are intended to make most impact during their course. Abnormal events triggered by spammers' activities could be masked in the load of future events, which static analysis would fail to identify. In this work, we approach the opinion spam problem with a temporal formulation. Specifically, we monitor a list of carefully selected indicative signals of opinion spam over time and design efficient techniques to both detect and characterize abnormal events in real-time. Experiments on datasets from two different review sites show that our approach is fast, effective, and practical to be deployed in real-world systems.

Citations (54)

Summary

We haven't generated a summary for this paper yet.