Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Isomorphisms of Cayley graphs on nilpotent groups (1603.01883v2)

Published 6 Mar 2016 in math.CO and math.GR

Abstract: Let S be a finite generating set of a torsion-free, nilpotent group G. We show that every automorphism of the Cayley graph Cay(G;S) is affine. (That is, every automorphism of the graph is obtained by composing a group automorphism with multiplication by an element of the group.) More generally, we show that if Cay(G;S) and Cay(G';S') are connected Cayley graphs of finite valency on two nilpotent groups G and G', then every isomorphism from Cay(G;S) to Cay(G';S') factors through to a well-defined affine map from G/N to G'/N', where N and N' are the torsion subgroups of G and G', respectively. For the special case where the groups are abelian, these results were previously proved by A.A.Ryabchenko and C.Loeh, respectively.

Summary

We haven't generated a summary for this paper yet.