Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

There is no bound on sizes of indecomposable Banach spaces (1603.01753v1)

Published 5 Mar 2016 in math.FA, math.GN, math.LO, and math.OA

Abstract: Assuming the generalized continuum hypothesis we construct arbitrarily big indecomposable Banach spaces. i.e., such that whenever they are decomposed as $X\oplus Y$, then one of the closed subspaces $X$ or $Y$ must be finite dimensional. It requires alternative techniques compared to those which were initiated by Gowers and Maurey or Argyros with the coauthors. This is because hereditarily indecomposable Banach spaces always embed into $\ell_\infty$ and so their density and cardinality is bounded by the continuum and because dual Banach spaces of densities bigger than continuum are decomposable by a result due to Heinrich and Mankiewicz. The obtained Banach spaces are of the form $C(K)$ for some compact connected Hausdorff space and have few operators in the sense that every linear bounded operator $T$ on $C(K)$ for every $f\in C(K)$ satisfies $T(f)=gf+S(f)$ where $g\in C(K)$ and $S$ is weakly compact or equivalently strictly singular. In particular, the spaces carry the structure of a Banach algebra and in the complex case even the structure of a $C*$-algebra.

Summary

We haven't generated a summary for this paper yet.