Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Heat kernel asymptotics on sequences of elliptically degenerating Riemann surfaces (1603.01495v1)

Published 4 Mar 2016 in math.NT and math.SP

Abstract: This is the first of two articles in which we define an elliptically degenerating family of hyperbolic Riemann surfaces and study the asymptotic behavior of the associated spectral theory. Our study is motivated by a result from \cite{He 83}, which Hejhal attributes to Selberg, proving spectral accumulation for the family of Hecke triangle groups. In this article, we prove various results regarding the asymptotic behavior of heat kernels and traces of heat kernels for both real and complex time. In \cite{GJ 16}, we will use the results from this article and study the asymptotic behavior of numerous spectral functions through elliptic degeneration, including spectral counting functions, Selberg's zeta function, Hurwitz-type zeta functions, determinants of the Laplacian, wave kernels, spectral projections, small eigenfunctions, and small eigenvalues. The method of proof we employ follows the template set in previous articles which study spectral theory on degenerating families of finite volume Riemann surfaces (\cite{HJL 95}, \cite{HJL 97}, \cite{JoLu 97a}, and \cite{JoLu 97b}) and on degenerating families of finite volume hyperbolic three manifolds (\cite{DJ 98}). Although the types of results developed here and in \cite{GJ 16} are similar to those in existing articles, it is necessary to thoroughly present all details in the setting of elliptic degeneration in order to uncover all nuances in this setting.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.