Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A remark on the multipliers on spaces of weak products of functions (1603.01233v1)

Published 3 Mar 2016 in math.CV

Abstract: If $\mathcal{H}$ denotes a Hilbert space of analytic functions on a region $\Omega \subseteq \mathbb{C}d$, then the weak product is defined by $$\mathcal{H}\odot\mathcal{H}=\left{h=\sum_{n=1}\infty f_n g_n : \sum_{n=1}\infty |f_n|{\mathcal{H}}|g_n|{\mathcal{H}} <\infty\right}.$$ We prove that if $\mathcal{H}$ is a first order holomorphic Besov Hilbert space on the unit ball of $\mathbb{C}d$, then the multiplier algebras of $\mathcal{H}$ and of $\mathcal{H}\odot\mathcal{H}$ coincide.

Summary

We haven't generated a summary for this paper yet.