Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ballistic Transport for Limit-Periodic Jacobi Matrices with Applications to Quantum Many-Body Problems (1603.01173v3)

Published 3 Mar 2016 in math.SP, math-ph, math.DS, and math.MP

Abstract: We study Jacobi matrices that are uniformly approximated by periodic operators. We show that if the rate of approximation is sufficiently rapid, then the associated quantum dynamics are ballistic in a rather strong sense; namely, the (normalized) Heisenberg evolution of the position operator converges strongly to a self-adjoint operator that is injective on the space of absolutely summable sequences. In particular, this means that all transport exponents corresponding to well-localized initial states are equal to one. Our result may be applied to a class of quantum many-body problems. Specifically, we establish a lower bound on the Lieb--Robinson velocity for an isotropic XY spin chain on the integers with limit-periodic couplings.

Summary

We haven't generated a summary for this paper yet.