Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

First Steps Toward Camera Model Identification with Convolutional Neural Networks (1603.01068v2)

Published 3 Mar 2016 in cs.CV and cs.MM

Abstract: Detecting the camera model used to shoot a picture enables to solve a wide series of forensic problems, from copyright infringement to ownership attribution. For this reason, the forensic community has developed a set of camera model identification algorithms that exploit characteristic traces left on acquired images by the processing pipelines specific of each camera model. In this paper, we investigate a novel approach to solve camera model identification problem. Specifically, we propose a data-driven algorithm based on convolutional neural networks, which learns features characterizing each camera model directly from the acquired pictures. Results on a well-known dataset of 18 camera models show that: (i) the proposed method outperforms up-to-date state-of-the-art algorithms on classification of 64x64 color image patches; (ii) features learned by the proposed network generalize to camera models never used for training.

Summary

We haven't generated a summary for this paper yet.