Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Truncated Random Measures (1603.00861v4)

Published 2 Mar 2016 in math.ST, stat.ME, and stat.TH

Abstract: Completely random measures (CRMs) and their normalizations are a rich source of Bayesian nonparametric priors. Examples include the beta, gamma, and Dirichlet processes. In this paper we detail two major classes of sequential CRM representations---series representations and superposition representations---within which we organize both novel and existing sequential representations that can be used for simulation and posterior inference. These two classes and their constituent representations subsume existing ones that have previously been developed in an ad hoc manner for specific processes. Since a complete infinite-dimensional CRM cannot be used explicitly for computation, sequential representations are often truncated for tractability. We provide truncation error analyses for each type of sequential representation, as well as their normalized versions, thereby generalizing and improving upon existing truncation error bounds in the literature. We analyze the computational complexity of the sequential representations, which in conjunction with our error bounds allows us to directly compare representations and discuss their relative efficiency. We include numerous applications of our theoretical results to commonly-used (normalized) CRMs, demonstrating that our results enable a straightforward representation and analysis of CRMs that has not previously been available in a Bayesian nonparametric context.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com