Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on the Ostrovsky equation in weighted Sobolev spaces (1603.00783v1)

Published 2 Mar 2016 in math.AP

Abstract: In this work we consider the initial value problem (IVP) associated to the Ostrovsky equations $$\left. \begin{array}{rl} u_t+\partial_x3 u\pm \partial_x{-1}u +u \partial_x u &\hspace{-2mm}=0,\qquad\qquad x\in\mathbb R,\; t\in\mathbb R,\ u(x,0)&\hspace{-2mm}=u_0(x). \end{array} \right}$$ We study the well-posedness of the IVP in the weighted Sobolev spaces $$Z_{s,\frac{s}2}:={u\in Hs(\mathbb R):D_x{-s} u\in L2(\mathbb R)}\cap L2(|x|s dx ),$$ with $\frac34<s\leq 1$.

Summary

We haven't generated a summary for this paper yet.