Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyperkähler fourfolds and Kummer surfaces (1603.00403v2)

Published 1 Mar 2016 in math.AG

Abstract: We show that a Hilbert scheme of conics on a Fano fourfold double cover of $\mathbb{P}2\times\mathbb{P}2$ ramified along a divisor of bidegree $(2,2)$ admits a $\mathbb{P}1$-fibration with base being a hyper-K\"{a}hler fourfold. We investigate the geometry of such fourfolds relating them with degenerated EPW cubes, with elements in the Brauer groups of $K3$ surfaces of degree $2$, and with Verra threefolds studied in [Ver04]. These hyper-K\"{a}hler fourfolds admit natural involutions and complete the classification of geometric realizations of anti-symplectic involutions on hyper-K\"{a}hler $4$-folds of type $K3{[2]}$. As a consequence we present also three constructions of quartic Kummer surfaces in $\mathbb{P}3$: as Lagrangian and symmetric degeneracy loci and as the base of a fibration of conics in certain threefold quadric bundles over $\mathbb{P}1$.

Summary

We haven't generated a summary for this paper yet.