Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Ratio of Eigenvalues of the Dirichlet Eigenvalue Problem for Equations with One-Dimensional p-Laplacian (1603.00354v1)

Published 1 Mar 2016 in math.SP

Abstract: Chao-Zhong Chen et al. $[{Proc}.$ ${Amer. Math. Soc},2013],$ proved the upper estimate $\frac{\lambda {n}}{\lambda _{m}}\leq \frac{% n{p}}{m{p}}$ $ (n>m\geq 1) $ for Dirichlet Shr\"{o}dinger operators with nonnegative and single-well potentials. In this paper we discuss the case of nonpositive potentials $q(x)$ continuous on the interval $[ 0,1] $. We prove that if $q(x)\leq 0$ and single-barrier then $\frac{\lambda _{n}}{\lambda _{m}}\geq \frac{n{p}% }{m{p}}$ for $\lambda _{n}>\lambda _{m}\geq -2q{\ast },$ where $q{\ast}=\inf{q(0), q(1)}$. Furthermore, we show that there exists $\ell{0}\in ( 0,1] $ such that for all $\ell\in(0,\ell_{0}],$ the associated eigenvalues $(\lambda {n}(\ell)) _{n\geq 1}$ (of the problem defined on $[0,\ell]$) satisfy $ \lambda _{1}( \ell)>0$ and $\frac{\lambda _{n}( \ell)}{\lambda _{m}( \ell) }\geq \frac{n{p}}{m{p}}$ $n>m\geq 1$. The value $\ell _{0}$ satisfies the following estimate $0<\ell{0}\leq \sqrt[p]{\frac{-p}{3q{*}}}$.

Summary

We haven't generated a summary for this paper yet.