Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fuglede's spectral set conjecture for convex polytopes (1602.08854v2)

Published 29 Feb 2016 in math.CA and math.FA

Abstract: Let $\Omega$ be a convex polytope in $\mathbb{R}d$. We say that $\Omega$ is spectral if the space $L2(\Omega)$ admits an orthogonal basis consisting of exponential functions. There is a conjecture, which goes back to Fuglede (1974), that $\Omega$ is spectral if and only if it can tile the space by translations. It is known that if $\Omega$ tiles then it is spectral, but the converse was proved only in dimension $d=2$, by Iosevich, Katz and Tao. By a result due to Kolountzakis, if a convex polytope $\Omega\subset \mathbb{R}d$ is spectral, then it must be centrally symmetric. We prove that also all the facets of $\Omega$ are centrally symmetric. These conditions are necessary for $\Omega$ to tile by translations. We also develop an approach which allows us to prove that in dimension $d=3$, any spectral convex polytope $\Omega$ indeed tiles by translations. Thus we obtain that Fuglede's conjecture is true for convex polytopes in $\mathbb{R}3$.

Summary

We haven't generated a summary for this paper yet.