Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference in Functional Linear Quantile Regression (1602.08793v3)

Published 29 Feb 2016 in stat.ME, math.ST, and stat.TH

Abstract: In this paper, we study statistical inference in functional quantile regression for scalar response and a functional covariate. Specifically, we consider a functional linear quantile regression model where the effect of the covariate on the quantile of the response is modeled through the inner product between the functional covariate and an unknown smooth regression parameter function that varies with the level of quantile. The objective is to test that the regression parameter is constant across several quantile levels of interest. The parameter function is estimated by combining ideas from functional principal component analysis and quantile regression. An adjusted Wald testing procedure is proposed for this hypothesis of interest, and its chi-square asymptotic null distribution is derived. The testing procedure is investigated numerically in simulations involving sparse and noisy functional covariates and in a capital bike share data application. The proposed approach is easy to implement and the {\tt R} code is published online at \url{https://github.com/xylimeng/fQR-testing}.

Summary

We haven't generated a summary for this paper yet.