Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning and Free Energies for Vector Approximate Message Passing (1602.08207v4)

Published 26 Feb 2016 in cs.IT, math.IT, and stat.ML

Abstract: Vector approximate message passing (VAMP) is a computationally simple approach to the recovery of a signal $\mathbf{x}$ from noisy linear measurements $\mathbf{y}=\mathbf{Ax}+\mathbf{w}$. Like the AMP proposed by Donoho, Maleki, and Montanari in 2009, VAMP is characterized by a rigorous state evolution (SE) that holds under certain large random matrices and that matches the replica prediction of optimality. But while AMP's SE holds only for large i.i.d. sub-Gaussian $\mathbf{A}$, VAMP's SE holds under the much larger class: right-rotationally invariant $\mathbf{A}$. To run VAMP, however, one must specify the statistical parameters of the signal and noise. This work combines VAMP with Expectation-Maximization to yield an algorithm, EM-VAMP, that can jointly recover $\mathbf{x}$ while learning those statistical parameters. The fixed points of the proposed EM-VAMP algorithm are shown to be stationary points of a certain constrained free-energy, providing a variational interpretation of the algorithm. Numerical simulations show that EM-VAMP is robust to highly ill-conditioned $\mathbf{A}$ with performance nearly matching oracle-parameter VAMP.

Citations (28)

Summary

We haven't generated a summary for this paper yet.