Game-Theoretic Semantics for Alternating-Time Temporal Logic (1602.07667v3)
Abstract: We introduce versions of game-theoretic semantics (GTS) for Alternating-Time Temporal Logic (ATL). In GTS, truth is defined in terms of existence of a winning strategy in a semantic evaluation game, and thus the game-theoretic perspective appears in the framework of ATL on two semantic levels: on the object level in the standard semantics of the strategic operators, and on the meta-level where game-theoretic logical semantics is applied to ATL. We unify these two perspectives into semantic evaluation games specially designed for ATL. The game-theoretic perspective enables us to identify new variants of the semantics of ATL based on limiting the time resources available to the verifier and falsifier in the semantic evaluation game. We introduce and analyse an unbounded and (ordinal) bounded GTS and prove these to be equivalent to the standard (Tarski-style) compositional semantics. We show that in these both versions of GTS, truth of ATL formulae can always be determined in finite time, i.e., without constructing infinite paths. We also introduce a non-equivalent finitely bounded semantics and argue that it is natural from both logical and game-theoretic perspectives.