Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frobenius pairs in abelian categories: correspondences with cotorsion pairs, exact model categories, and Auslander-Buchweitz contexts (1602.07328v2)

Published 23 Feb 2016 in math.CT

Abstract: In this work, we revisit Auslander-Buchweitz Approximation Theory and find some relations with cotorsion pairs and model category structures. From the notions of relatives generators and cogenerators in Approximation Theory, we introduce the concept of left Frobenius pairs $(\mathcal{X},\omega)$ in an abelian category $\mathcal{C}$. We show how to construct from $(\mathcal{X},\omega)$ a projective exact model structure on $\mathcal{X}\wedge$, as a result of Hovey-Gillespie Correspondence applied to two compatible and complete cotorsion pairs in $\mathcal{X}\wedge$. These pairs can be regarded as examples of what we call cotorsion pairs relative to a thick subcategory of $\mathcal{C}$. We establish some correspondences between Frobenius pairs, relative cotorsion pairs, exact model structures and Auslander-Buchweitz contexts. Finally, some applications of these results are given in the context of Gorenstein homological algebra by generalizing some existing model structures on the categories of modules over Gorenstein and Ding-Chen rings, and by encoding the stable module category of a ring as a certain homotopy category. We also present some connections with perfect cotorsion pairs, covering classes, and cotilting modules.

Summary

We haven't generated a summary for this paper yet.