Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decomposable theta divisors and generic vanishing (1602.06226v2)

Published 19 Feb 2016 in math.AG

Abstract: We study ample divisors X with only rational singularities on abelian varieties that decompose into a sum of two lower dimensional subvarieties, X=V+W. For instance, we prove an optimal lower bound on the degree of the corresponding addition map, and show that the minimum can only be achieved if X is a theta divisor. Conjecturally, the latter happens only on Jacobians of curves and intermediate Jacobians of cubic threefolds. As an application, we prove that nondegenerate generic vanishing subschemes of indecomposable principally polarized abelian varieties are automatically reduced and irreducible, have the expected geometric genus, and property (P) with respect to their theta duals.

Summary

We haven't generated a summary for this paper yet.