Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scaling up Dynamic Topic Models (1602.06049v1)

Published 19 Feb 2016 in stat.ML

Abstract: Dynamic topic models (DTMs) are very effective in discovering topics and capturing their evolution trends in time series data. To do posterior inference of DTMs, existing methods are all batch algorithms that scan the full dataset before each update of the model and make inexact variational approximations with mean-field assumptions. Due to a lack of a more scalable inference algorithm, despite the usefulness, DTMs have not captured large topic dynamics. This paper fills this research void, and presents a fast and parallelizable inference algorithm using Gibbs Sampling with Stochastic Gradient Langevin Dynamics that does not make any unwarranted assumptions. We also present a Metropolis-Hastings based $O(1)$ sampler for topic assignments for each word token. In a distributed environment, our algorithm requires very little communication between workers during sampling (almost embarrassingly parallel) and scales up to large-scale applications. We are able to learn the largest Dynamic Topic Model to our knowledge, and learned the dynamics of 1,000 topics from 2.6 million documents in less than half an hour, and our empirical results show that our algorithm is not only orders of magnitude faster than the baselines but also achieves lower perplexity.

Citations (67)

Summary

We haven't generated a summary for this paper yet.