Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayes interpretation of stacking for M-complete and M-open settings (1602.05162v1)

Published 16 Feb 2016 in math.ST and stat.TH

Abstract: In M-open problems where no true model can be conceptualized, it is common to back off from modeling and merely seek good prediction. Even in M-complete problems, taking a predictive approach can be very useful. Stacking is a model averaging procedure that gives a composite predictor by combining individual predictors from a list of models using weights that optimize a cross-validation criterion. We show that the stacking weights also asymptotically minimize a posterior expected loss. Hence we formally provide a Bayesian justification for cross-validation. Often the weights are constrained to be positive and sum to one. For greater generality, we omit the positivity constraint and relax the sum to one' constraint. A key question isWhat predictors should be in the average?' We first verify that the stacking error depends only on the span of the models. Then we propose using bootstrap samples from the data to generate empirical basis elements that can be used to form models. We use this in two computed examples to give stacking predictors that are (i) data driven, (ii) optimal with respect to the number of component predictors, and (iii) optimal with respect to the weight each predictor gets.

Summary

We haven't generated a summary for this paper yet.