Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preference Elicitation in Matching Markets via Interviews: A Study of Offline Benchmarks (1602.04792v3)

Published 15 Feb 2016 in cs.GT

Abstract: The stable marriage problem and its extensions have been extensively studied, with much of the work in the literature assuming that agents fully know their own preferences over alternatives. This assumption however is not always practical (especially in large markets) and agents usually need to go through some costly deliberation process in order to learn their preferences. In this paper we assume that such deliberations are carried out via interviews, where an interview involves a man and a woman, each of whom learns information about the other as a consequence. If everybody interviews everyone else, then clearly agents can fully learn their preferences. But interviews are costly, and we may wish to minimize their use. It is often the case, especially in practical settings, that due to correlation between agents' preferences, it is unnecessary for all potential interviews to be carried out in order to obtain a stable matching. Thus the problem is to find a good strategy for interviews to be carried out in order to minimize their use, whilst leading to a stable matching. One way to evaluate the performance of an interview strategy is to compare it against a naive algorithm that conducts all interviews. We argue however that a more meaningful comparison would be against an optimal offline algorithm that has access to agents' preference orderings under complete information. We show that, unless P=NP, no offline algorithm can compute the optimal interview strategy in polynomial time. If we are additionally aiming for a particular stable matching (perhaps one with certain desirable properties), we provide restricted settings under which efficient optimal offline algorithms exist.

Citations (4)

Summary

We haven't generated a summary for this paper yet.