Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Representation of Low-Dimensional Manifolds using Deep Networks (1602.04723v1)

Published 15 Feb 2016 in cs.NE, cs.LG, and stat.ML

Abstract: We consider the ability of deep neural networks to represent data that lies near a low-dimensional manifold in a high-dimensional space. We show that deep networks can efficiently extract the intrinsic, low-dimensional coordinates of such data. We first show that the first two layers of a deep network can exactly embed points lying on a monotonic chain, a special type of piecewise linear manifold, mapping them to a low-dimensional Euclidean space. Remarkably, the network can do this using an almost optimal number of parameters. We also show that this network projects nearby points onto the manifold and then embeds them with little error. We then extend these results to more general manifolds.

Citations (43)

Summary

We haven't generated a summary for this paper yet.