Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lattice spanners of low degree (1602.04381v2)

Published 13 Feb 2016 in math.MG and cs.CG

Abstract: Let $\delta_0(P,k)$ denote the degree $k$ dilation of a point set $P$ in the domain of plane geometric spanners. If $\Lambda$ is the infinite square lattice, it is shown that $1+\sqrt{2} \leq \delta_0(\Lambda,3) \leq (3+2\sqrt2) \, 5{-1/2} = 2.6065\ldots$ and $\delta_0(\Lambda,4) = \sqrt{2}$. If $\Lambda$ is the infinite hexagonal lattice, it is shown that $\delta_0(\Lambda,3) = 1+\sqrt{3}$ and $\delta_0(\Lambda,4) = 2$. All our constructions are planar lattice tilings constrained to degree $3$ or $4$.

Citations (11)

Summary

We haven't generated a summary for this paper yet.