Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Manifolds of Projective Shapes (1602.04330v4)

Published 13 Feb 2016 in math.ST, cs.CV, math.GT, and stat.TH

Abstract: The projective shape of a configuration of k points or "landmarks" in RP(d) consists of the information that is invariant under projective transformations and hence is reconstructable from uncalibrated camera views. Mathematically, the space of projective shapes for these k landmarks can be described as the quotient space of k copies of RP(d) modulo the action of the projective linear group PGL(d). Using homogeneous coordinates, such configurations can be described as real k-times-(d+1)-dimensional matrices given up to left-multiplication of non-singular diagonal matrices, while the group PGL(d) acts as GL(d+1) from the right. The main purpose of this paper is to give a detailed examination of the topology of projective shape space, and, using matrix notation, it is shown how to derive subsets that are in a certain sense maximal, differentiable Hausdorff manifolds which can be provided with a Riemannian metric. A special subclass of the projective shapes consists of the Tyler regular shapes, for which geometrically motivated pre-shapes can be defined, thus allowing for the construction of a natural Riemannian metric.

Citations (3)

Summary

We haven't generated a summary for this paper yet.