Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tightening the entropic uncertainty bound in the presence of quantum memory (1602.04296v3)

Published 13 Feb 2016 in quant-ph

Abstract: The uncertainty principle is a fundamental principle in quantum physics. It implies that the measurement outcomes of two incompatible observables can not be predicted simultaneously. In quantum information theory, this principle can be expressed in terms of entropic measures. Berta \emph{et al}. [\href{http://www.nature.com/doifinder/10.1038/nphys1734}{ Nature Phys. 6, 659 (2010) }] have indicated that uncertainty bound can be altered by considering a particle as a quantum memory correlating with the primary particle. In this article, we obtain a lower bound for entropic uncertainty in the presence of a quantum memory by adding an additional term depending on Holevo quantity and mutual information. We conclude that our lower bound will be tighten with respect to that of Berta \emph{et al.}, when the accessible information about measurements outcomes is less than the mutual information of the joint state. Some examples have been investigated for which our lower bound is tighter than the Berta's \emph{et al.} lower bound. Using our lower bound, a lower bound for the entanglement of formation of bipartite quantum states has obtained, as well as an upper bound for the regularized distillable common randomness.

Summary

We haven't generated a summary for this paper yet.