Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Deconvolutional Networks for Semantic Segmentation (1602.03930v2)

Published 12 Feb 2016 in cs.CV

Abstract: Semantic image segmentation is a principal problem in computer vision, where the aim is to correctly classify each individual pixel of an image into a semantic label. Its widespread use in many areas, including medical imaging and autonomous driving, has fostered extensive research in recent years. Empirical improvements in tackling this task have primarily been motivated by successful exploitation of Convolutional Neural Networks (CNNs) pre-trained for image classification and object recognition. However, the pixel-wise labelling with CNNs has its own unique challenges: (1) an accurate deconvolution, or upsampling, of low-resolution output into a higher-resolution segmentation mask and (2) an inclusion of global information, or context, within locally extracted features. To address these issues, we propose a novel architecture to conduct the equivalent of the deconvolution operation globally and acquire dense predictions. We demonstrate that it leads to improved performance of state-of-the-art semantic segmentation models on the PASCAL VOC 2012 benchmark, reaching 74.0% mean IU accuracy on the test set.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Vladimir Nekrasov (7 papers)
  2. Janghoon Ju (6 papers)
  3. Jaesik Choi (66 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.