Papers
Topics
Authors
Recent
Search
2000 character limit reached

On subgroup conjugacy separability of hyperbolic QVH-groups

Published 10 Feb 2016 in math.GR | (1602.03229v2)

Abstract: A group $G$ is called subgroup conjugacy separable (abbreviated as SCS) if any two finitely generated and non-conjugate subgroups of $G$ remain non-conjugate in some finite quotient of $G$. An into-conjugacy version of SCS is abbreviated by SICS. We prove that if $G$ is a hyperbolic group, $H_1$ is a quasiconvex subgroup of $G$, and $H_2$ is a subgroup of $G$ which is elementwise conjugate into $H_1$, then there exists a finite index subgroup of $H_2$ which is conjugate into $H_1$. As corollary, we deduce that fundamental groups of closed hyperbolic 3-manifolds and torsion-free small cancellation groups with finite $C'(1/6)$ or $C'(1/4)-T(4)$ presentations are hereditarily quasiconvex-SCS and hereditarily quasiconvex-SICS, and that surface groups are SCS and SICS. We also show that the word "quasiconvex" cannot be deleted for at least small cancellation groups.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.