Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integral p-adic Hodge theory (1602.03148v3)

Published 9 Feb 2016 in math.AG and math.NT

Abstract: We construct a new cohomology theory for proper smooth (formal) schemes over the ring of integers of C_p. It takes values in a mixed-characteristic analogue of Dieudonne modules, which was previously defined by Fargues as a version of Breuil-Kisin modules. Notably, this cohomology theory specializes to all other known p-adic cohomology theories, such as crystalline, de Rham and etale cohomology, which allows us to prove strong integral comparison theorems. The construction of the cohomology theory relies on Faltings's almost purity theorem, along with a certain functor $L\eta$ on the derived category, defined previously by Berthelot-Ogus. On affine pieces, our cohomology theory admits a relation to the theory of de Rham-Witt complexes of Langer-Zink, and can be computed as a q-deformation of de Rham cohomology.

Summary

We haven't generated a summary for this paper yet.