Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of random sums and statistics constructed from samples with random sizes to the Linnik and Mittag-Leffler distributions and their generalizations (1602.02480v1)

Published 8 Feb 2016 in math.PR

Abstract: We present some product representations for random variables with the Linnik, Mittag-Leffler and Weibull distributions and establish the relationship between the mixing distributions in these representations. Based on these representations, we prove some limit theorems for a wide class of rather simple statistics constructed from samples with random sized including, e. g., random sums of independent random variables with finite variances, maximum random sums, extreme order statistics, in which the Linnik and Mittag-Leffler distributions play the role of limit laws. Thus we demonstrate that the scheme of geometric summation is far not the only asymptotic setting (even for sums of independent random variables) in which the Mittag-Leffler and Linnik laws appear as limit distributions. The two-sided Mittag-Leffler and one-sided Linnik distribution are introduced and also proved to be limit laws for some statistics constructed from samples with random sizes.

Summary

We haven't generated a summary for this paper yet.